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Phytoplankton biomass and productivity have been continuously monitored from ocean color satellites for over a decade. Yet, the most
widely used empirical approach for estimating chlorophyll a (Chl) from satellites can be in error by a factor of 5 or more. Such variability is
due to differences in absorption and backscattering properties of phytoplankton and related concentrations of colored-dissolved organic
matter (CDOM) and minerals. The empirical algorithms have built-in assumptions that follow the basic precept of biological oceanography
—namely, oligotrophic regions with low phytoplankton biomass are populated with small phytoplankton, whereas more productive
regions contain larger bloom-forming phytoplankton. With a changing world ocean, phytoplankton composition may shift in response to
altered environmental forcing, and CDOM and mineral concentrations may become uncoupled from phytoplankton stocks, creating
further uncertainty and error in the empirical approaches. Hence, caution is warranted when using empirically derived Chl to infer climate-
related changes in ocean biology. The Southern Ocean is already experiencing climatic shifts and shows substantial errors in satellite-
derived Chl for different phytoplankton assemblages. Accurate global assessments of phytoplankton will require improved technology
and modeling, enhanced field observations, and ongoing validation of our “eyes in space.”
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S
ince the Coastal Zone Color
Scanner launched in 1978, chloro-
phyll a (Chl) has been derived
from satellite measurements of

ocean color and used to assess phyto-
plankton biomass, primary production,
and the ocean’s impact on the climate cy-
cle (1, 2). The basic approach for remote
sensing Chl follows from the premise
that phytoplankton shift the reflected
color spectrum from predominantly blue
to green (3, 4). Standard calculation of Chl
involves an empirical relationship de-
veloped from field observations of Chl and
ocean color collected throughout the
global ocean. Empirical approaches are
used because an analytical solution to the
problem requires an assessment of the
entire radiance distribution and depth
derivative (5), and such measurements are
not possible with remote sensing. Only the
upward flux incident upon the water/air
interface at angles less than 48°, the angle at
which complete internal reflection occurs,
arrives above the sea surface, and generally
only photons traveling roughly perpendic-
ular to the sea surface are sensed from
space (6). The current empirical algorithms
have been applied to the vastmajority of the
ocean waters, historically termed “case 1”
(4), where sea-surface optical properties
vary primarily as a function of changes in
phytoplankton biomass.
The apparent success of the empirical

algorithm has led to the common mis-
perception that ocean color remote sensing
is a tractable problem that can be moved
away from basic science and into the
“operational” realm. Empirical algo-
rithms, however, are only gross general-
izations about phytoplankton biomass
stemming primarily from implicit assump-
tions about how light is absorbed and

scattered in surface waters. Many com-
pelling climate-related changes in global
phytoplankton biomass have been attrib-
uted to satellite-derived estimates of sur-
face Chl, including a decline in produc-
tivity since 1999 (2) and the expansion of
low-productivity regions (7, 8). However,
temporal and spatial differences in ocean
color may not be the result of changing
Chl or phytoplankton biomass per se but
from shifts in phytoplankton assemblages,
physiology, or other optically active sub-
stances like colored-dissolved organic
matter (CDOM). Furthermore, only sur-
face waters are imaged with passive re-
mote sensing and then correlated to
depth-integrated phytoplankton biomass.
Regions such as the Arctic, however, show
a decoupling of surface and deep phyto-
plankton biomass that are not assessed
with passive ocean-color measurements
(9). Interpretations of any regional or cli-
mate-related trends in satellite-derived
chlorophyll require a better understanding
of the theoretical underpinnings of the
empirical algorithms.
Oceanic carbon fixation must be quan-

tified to assess the fate of atmospheric
carbon dioxide and potential changes in
climate. Phytoplankton photosynthesis
promotes absorption of carbon dioxide
from the atmosphere, and export of fixed
carbon to the ocean interior provides
a long-term sink for atmospheric carbon
dioxide (10). Though satellite-derived
Chl is not a direct measure of carbon fix-
ation in phytoplankton, such estimates are
typically derived from correlates of Chl
and rates of carbon fixation (11). These
relationships vary with phytoplankton
species assemblages and their physiologi-
cal state related to light, temperature,
nutrients, and other environmental factors

(12). Here, the most widely used and
published empirical ocean color algorithm
for Chl is explored with the hope that
better interpretation of such data may also
lead to improved estimates of primary
productivity and the global carbon budget,
particularly in a changing ocean. Large
inputs of glacial meltwater, changes in
stratification, ocean acidity, upwelling, and
the magnitude and duration of storms may
alter ocean life over the next century (13),
(14). Such changes will influence the
manner in which light is absorbed and
scattered out of the world ocean and the
approaches for determining Chl, carbon
fixation, and other biogeochemical pa-
rameters from space.

Principles and Limitations of Empirical
Algorithms
Empirical ocean color (OC) algorithms use
two bands (OC2), three bands (OC3), or
four bands (OC4) for global processing of
imagery. The ocean color empirical algo-
rithm, OC4V4, developed for the Sea-
Viewing Wide Field-of-View Sensor
(SeaWiFS), was derived from an optical
dataset of the world’s ocean spanning Chl
concentrations from 0.02 to 50 mg·m−3

(15). The algorithm quantifies Chl as
a function of the how much blue and green
light is reflected from the sea surface.
Numerically, a simple ratio of blue light
(443, 490, or 510 nm, depending on which
is greater) to green light (555 nm) is used.
This basic “band ratio” approach has
been carried forward to recent updates of
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the algorithm with only minor mod-
ifications to the empirical coefficients
(e.g., OCv6).
The OC4V4 algorithm is a fourth-order

polynomial fitting the average trend of the
data (Fig. 1A). Superimposed lines show
predicted OC4V4 Chl concentrations oc-
curring within factors of 2–5 of the mea-
sured Chl. The global ocean is largely
oligotrophic with a median Chl value
around 0.2 mg·m−3 (Fig. 1B). Fortunately,
the model performs best at low Chl (<0.2
mg Chl·m−3) where values generally fall
within a factor of 2 of model predictions.
At high Chl, however, data are scattered
within a factor of 5 of the modeled values,
well outside the satellite data product ac-
curacy goals of ±35% for Chl in the open
ocean (16).
Particularly on a log-log plot, the human

eye has a tendency to evaluate model
performance based on the clustering of
points near the trend line rather than the
applicability of the model. The actual al-
gorithm describes data following along
a single reflectance ratio in the x axis, not

the nearest data to the line. For example,
if a sensor measured a blue-to-green re-
flectance ratio of 0.7, the data fitting that
ratio, shown as the vertical magenta line
in Fig. 1A, ranges from 1.7 to more than 30
mg·m−3. The OC4V4 model would cap-
ture all of that variability as only one Chl
value of 7.7 mg·m−3.
The OC4V4 model has essentially three

different slopes in the polynomial re-
lationship: a gentle (−1.6), intermediate
(−2.4), and a steep slope (−3.6), corre-
sponding to increasing amounts of Chl
in the water column (Fig. 1A). These
changing slopes arise largely from switch-
ing between different wavelengths of light
in the numerator of the model. For
water containing low amounts of Chl (<0.7
mg·m−3), mostly blue light leaves the water
surface (Fig. 2A) and the shortest blue
wavelength of light (443 nm) is used in the
model. As Chl increases, more of the
blue light is absorbed and the maximum
wavelength of reflected light shifts toward
the longer or “greener” wavelengths of
light. The relationship becomes steepest at
high Chl (>1 mg·m−3), when 510 nm is
used in the numerator. Empirical algo-
rithms are selected based on a host of
statistical parameters and graphical crite-
ria (17), but no consideration is given to
the steepness of the slope. Particularly on
a log-log plot, a relationship with a steep
slope will not be as robust to errors in
sensor calibration, atmospheric correction,
or other sources of noise in the satellite
imagery and can lead to large errors in
retrieved Chl.
This empirical model is not widely ap-

plicable to coastal waters because fresh-
water plumes with CDOM and minerals
significantly impact the optical properties
(18). Moreover, nutrient fertilization from
terrestrial runoff can change phytoplank-
ton dynamics and even produce harmful
algal blooms that appear red in color (19).
Melting and runoff of glacial sources can
increase particle concentrations in the
nearshore and change phytoplankton as-
semblages (20, 21). Under shifting envi-
ronmental conditions, such localized
phenomena may move beyond the coastal
perimeter and require new approaches
throughout the world ocean.

Data Uncertainties
Some of the large variability in the em-
pirical data (Fig. 1A) could result from
errors in the radiometric and Chl meas-
urements. Remote sensing reflectance, Rrs,
is expressed as water-leaving radiance
normalized to incident irradiance on the
sea surface and is derived from other
measurements. Measurements made
above the sea surface must be corrected
for surface-reflected light (i.e., light that
has not penetrated the water column), and
measurements made from within the water

column must be extrapolated to a theoret-
ical depth just beneath the sea surface (0−)
and then numerically extrapolated across
the air-water interface (0+). A recent
analysis of Rrs measurements suggests that
the largest errors occur in the Soret or
blue band, with uncertainties on the order
of 9% spectrally (22). When considering
spectral band ratios, such as those used by
the OC algorithms, uncertainties were re-
duced to 3%. Errors can be larger with
less-well-calibrated instruments, different
sampling protocols, and challenging envi-
ronmental conditions (e.g., large capillary
and gravity waves, sun glitter, etc.).
Measurements of Chl, however, are

subject to potentially greater errors than
the radiometric measurements. Histori-
cally, Chl has been derived from filtered
fluorometric measurements following
standard methods (23). Even standardized

Fig. 1. (A) The empirical OC4V4 chlorophyll a al-
gorithm used for the SeaWiFS sensor, which has
produced the longest record of global Chl, shown
with the original spectral reflectance (Rrs) data
from which it was derived (17) and lines indicating
data within two- to fivefold of the relationship.
Different slopes in the model are due to the
wavelength switching from the Rrs(443) at low
Chl, Rrs(490) at middle Chl, and Rrs(510) at high
Chl. The magenta bar illustrates the large vari-
ability in data when the relationship has the
steepest slope. (B) Average composite SeaWiFS
satellite-derived Chl from 1997 to 2009 for the
world ocean.

Fig. 2. (A) Example relationship of how remote
sensing reflectance, Rrs, changes from blue peaked
to green peaked with increasing chlorophyll. (B)
The spectral shape and magnitude of chlorophyll-
normalized absorption, a*ph, changes for different
sizes of phytoplankton (30). (C) The bio-optical
relationships between particulate backscattering
and chlorophyll vary either linearly or log lin-
early, depending on the region. The straight lines
represent several different bio-optical models (4,
37, 38).
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methods, however, will yield different re-
sults depending on the composition of pig-
ments within the phytoplankton, and errors
can be on the order of 50% (24–26). The
presence of significant amounts of chloro-
phyll b, characteristic of chlorophytes, pro-
chlorophytes, and cryptophytes, causes
fluorometric techniques to underestimate
Chl. Conversely, high concentrations of
chlorophyll c, typically found in diatoms,
dinoflagellates, prasinophytes, and hapto-
phytes, lead to an overestimation of Chl
with respect tofluorometricmeasurements.
Such pigment differences can be important
for regions like the Southern Ocean. The
several-fold variability shown in Fig. 1A is
larger than these 3–50% measurement er-
rors, however, and much of it can be ex-
plained by known variability in phyto-
plankton and CDOM properties.

Absorption Properties
Different phytoplankton groups contain
diverse sets of light-absorbing pigments in
addition to Chl (25, 27, 28). Light absorp-
tion is also influenced by the manner in
which pigments are arranged or “pack-
aged” within the phytoplankton (29). Ab-
sorption properties for phytoplankton
can be differentiated by size class: pico-
plankton (<2 μm), ultraplankton (2–5 μm),
nanoplankton (5–20 μm), and micro-
plankton (>20 μm) (30). Per Chl molecule,
absorption coefficients vary significantly
with each size group, with picoplankton
absorbing the most light and microplank-
ton approximately eightfold less (Fig. 2B).
Size-specific absorption properties were

input into the radiative transfer model
Hydrolight (6) to investigate how phyto-
plankton size influences the empirical re-
lationship. Though the general model
shape was retrieved, the location of the
trend line varied with each size class.
Water dominated by microplankton gen-
erally had higher Chl than predicted by the
ocean color algorithm (Fig. 3A). Con-
versely, water dominated by picoplankton
had less Chl than that predicted by the
ocean color algorithm. The average trend
predicted by the OC4V4 ocean color al-
gorithm followed the smaller size classes
(picoplankton) at low Chl (0.1 mg·m−3)
and the larger size classes (e.g., nano-
plankton) at higher Chl. This adheres to
the basic concepts of biological oceanog-
raphy where oligotrophic regions with low
biomass tend to have small phytoplankton
(e.g., Synechococcus and Prochlorococcus)
(31). Larger, bloom-forming phytoplank-
ton (e.g., diatoms and dinoflagellates) are
added to the background of smaller cells in
neritic waters (32). These absorption pro-
perties, although not explicit to the
model formulation, are inherently built
into the empirical algorithm.
Light absorption from CDOM also has

considerable influence on empirical deri-

vations of Chl, but primarily at lower Chl
(<1 mg·m−3), when the bluest wavelength
is used in the model formulation. Sur-
face CDOM measurements spanning the
length of the Pacific Ocean ranged from
0 to 0.03 m−1 at 440 nm (33). Such large
variability was ascribed to upwelling of
deep-water masses in relationship to their
age and exposure to solar degradation
processes. Model results using this range
of CDOM produced Chl retrievals ranging
over a factor of 3 at low concentrations
(<0.2 mg Chl·m−3), with the OC4V4
model falling near the null CDOM at very
low Chl and becoming less sensitive to
CDOM at higher Chl when the formula-
tion uses longer blue wavelengths (490 and
510 nm; Fig. 3B). As discussed previously,
the majority of the ocean is oligotrophic,
with Chl below 0.2 mg·m−3, and would be
particularly sensitive to spectral variability
caused by CDOM (34).

Backscattering Properties
As more phytoplankton and other particles
are added to the water column, additional
light is scattered out of the water (i.e.,
backscattered), and the spectral nature of
light can be altered. Suspended sediments,
like the aragonite mud on the Great
Bahama Bank, highly backscatter light out
of the water (35). The size, outer coating,
and 3D structure all influence the spe-
cific backscattering properties of phyto-
plankton (36). For the world ocean, the
amount of backscattered light due to sus-
pended particles generally increases with
increasing concentrations of Chl (Fig. 2C),
and several different bio-optical models
have been generated to describe this re-
lationship (4, 37, 38). Most of these bio-
optical relationships follow a power law
with different slopes (Fig. 2C, straight
lines). Many of the regional datasets, how-
ever, tend to follow a linear relationship
and span a larger envelope of values. Par-
ticulate backscattering from the California
coastal waters (39), for example, is signifi-
cantly higher than from the Antarctic
Peninsula (21). Backscattering for oligo-
trophic water of the North Atlantic also
follows a linear relationship (40). One in-
terpretation of these trends is that phyto-
plankton are added to different background
levels of nonphytoplankton particles, such
as sediments, minerals, detritus, and bac-
teria (41).
How light backscatters in water across

the visible spectrums can be related to the
size of the phytoplankton. Small phyto-
plankton, like Synechococcus and
Prochlorococcus, have enhanced back-
scattering of blue photons. Larger phyto-
plankton tend to backscatter light similarly
at all wavelengths, or potentially more red
photons (19). To assess the sensitivity of
empirical ratios to backscattering, the ra-
diative transfer model was run with differ-
ent magnitudes of spectrally invariant
backscattering. Variability in backscatter-
ing alone produced twofold differences in
retrieved Chl (Fig. 3C). In summary,
changes in both the absorption and back-
scattering properties occur with changes in
phytoplankton size structure, and both
aspects have been implicitly incorporated
into the present empirical approaches.

Bio-Optics of the Southern Ocean
Climate change may be most pronounced
in polar regions, such as the expansive
Southern Ocean (3). Recent studies have
suggested that enhanced wind-driven up-
welling around Antarctica caused in-
creased ventilation of deep nutrient-rich
water, linked to diatom productivity, and
contributed to the deglacial rise in atmo-
spheric CO2 (42) Already today, winds
appear to be intensifying and weakening
the Southern Ocean’s ability to be a sink

Fig. 3. Sensitivity analysis of modeled reflectance
ratios vs chlorophyll for (A) differently sized phy-
toplankton modeled with fluctuating a*ph (from
Fig. 2B); (B) absorption by colored dissolved mat-
ter at 440 nm (acdm) varying from 0 to 0.03 m−1;
and (C) backscattering parameterized with par-
ticulate backscattering ratios from 0.001 to 0.04.
Gray dotted lines indicate values within a factor of
2 of OC4V4.
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for CO2 (43), and climate models pro-
ject such wind intensification to persist
throughout the century (44). Accurate
satellite assessments of phytoplankton
concentrations and, ideally, phytoplankton
functional groups (i.e., diatoms associated
with upwelling) in such remote locations
of the ocean will be a critical component
of earth’s climate observing capabilities.
Bio-optical properties in different

regions of the Southern Ocean lead to
variability in the standard Chl retrievals.
Along the Antarctic Peninsula region of
the Southern Ocean, for example, ocean
color algorithms were found to consistently
underestimate Chl by a factor of nearly 2
for most of the Chl range (Fig. 4A) (45).
Separate relationships have also been de-
veloped for Ross Sea waters dominated
by different phytoplankton assemblages
(diatoms, cryptophytes, and dinoflagel-
lates) (46). Along the Pacific Antarctic
Polar Front, a prevalence of small par-
ticles compared with Ross Sea waters
produced similar overestimates of Chl us-
ing the standard algorithms (47). Coccoli-
thophores and detached coccoliths found
in the Atlantic Antarctic Polar Front
elevate backscattering and may be the
source of small highly scattering particles

(48). In nearshore regions dominated by
glacial meltwater, reflectance and back-
scattering can be elevated due to glacial
particulates and further alter bio-optical
approaches (21). These relationships
were developed with the older algorithm
OC2V2, which uses only reflectance at 490
nm in the numerator, but the basic trends
should be similar for the wavelength-
switching OC4V4. As shown, different
model parameterizations can have >10-
fold range in retrieved Chl.
Part of the apparent overestimation of

Chl with empirical algorithms, for example,
may be ascribed to unique pigment com-
position within the phytoplankton. As
mentioned previously, fluorescence tech-
niques can be erroneous as a result of
varying amounts of other types of chloro-
phyll (b and c). Antarctic Peninsula spe-
cies can have low concentrations of
chlorophyll b and high concentrations of
chlorophyll c, leading to higher fluoro-
metric chlorophyll a than that determined
with HPLC (27). Data from 2000 to 2006
collected within a few kilometers of the
coast reveal a consistent offset between
fluorometric and HPLC Chl (49) (Fig.
4B). A similar offset was observed in the
Pacific sector of the Antarctic Polar Front
(47), although such offsets are not ubiq-
uitous across the Southern Ocean. The
reasons for unique pigmentation in Ant-
arctic phytoplankton are not well-defined;
however, the Southern Ocean ecosystem is
considered biologically unique at all tro-
phic levels (e.g., lack of modern predators
such as sharks) due to geographical bar-
riers to invasion, physiological constraints
from extreme cold temperatures, and in-
tense seasonality of resource supplies,
which make it particularly vulnerable to
climate change (21). Further un-
derstanding of the spectral variability in
surface waters and subsequent linkages to
the trophic web will be fundamental to
assessing changes in this
dynamic ecosystem.

Future Directions
The relative success of Chl retrieved
throughout the open ocean is remarkable
given the many uncertainties in the ocean
color algorithms. This achievement is
generally attributed to the bio-optical as-
sumption that ocean optical properties
covary with Chl (13). Averaged over
space and time, the basic biological
oceanographic precepts ring true: oligo-
trophic regions with low biomass tend to
be populated with small phytoplankton
(e.g., Synechococcus and Prochlorococcus)
and larger, bloom-forming phytoplankton
(e.g., diatoms and dinoflagellates) pre-
dominate at higher Chl—a consequence
of nutrient availability (21). Optically,
this translates to high Chl-specific ab-
sorption at low Chl and low Chl-specific

absorption at high Chl. These assump-
tions are inherently built into the empiri-
cal model, and hence Chl should not
be used as an independent parameter
inbio-optical models. If the standard
assumptions shift due to climate
change, Chl will still be derived from
the empirical algorithms but with un-
known accuracy.
A variety of acute and chronic hazards

facing the world ocean will impact ocean
biology and water color. These changes
include sediment plumes, altered food
webs, harmful algal blooms, changing
acidity, and alterations of benthic habitats
(50). Shifts in winds, clouds, and other
physical forces will have profound con-
sequences for ocean biota and ocean
color. Polar regions, in particular, are ex-
hibiting rapid changes due to shifts in cli-
mate. Along the Antarctic Peninsula,
for example, the contribution of small
phytoplankton has increased in the past
decade, potentially due to a greater fre-
quency of southerly winds (51). However,
the Antarctic Circumpolar Current may
also intensify in this region, which would
promote growth of larger phytoplankton.
The consequences of iron fertilization (52)
and other anthropogenic activities would
only serve to complicate phytoplankton
dynamics further. Such complicated and
potentially contradictory trends cannot be
observed with simple operational empiri-
cal ratios or with approaches that de-
lineate the optical properties within
predefined ocean provinces (53).
So where do we go from here? First and

foremost, ocean biology needs to be rec-
ognized as an important climate variable
essential for understanding global car-
bon stocks and forecasting future climate.
The relationships between physical forcing
and biological carbon storage in the
ocean are complex and not easy to predict
(54). As such, accurate assessments of the
quantity, production, and fate of ocean
phytoplankton should be considered of
high national importance and provided
the necessary resources for new research
and satellite missions (55). Remote sens-
ing of ocean Chl is far from being an op-
erational product capable of providing
high-quality estimates of ocean biology
under a changing climate. The current
empirical algorithm assumes the ocean is
a “black box” and reduces the biological,
chemical, and physical diversity into sim-
ple ratios of a few spectral bands (50). As
long as the ocean reflects light, the algo-
rithm will provide a value of Chl, regard-
less of accuracy. Hence, caution should be
applied when drawing climate-relevant
conclusions from empirically derived Chl.
Even in today’s ocean, different con-
clusions have been derived from ocean
color imagery to show that phytoplankton
stocks have increased across the global

Fig. 4. (A) Published empirical relationships be-
tween ratios of blue-to-green reflectance,
Rrs(490)/Rrs(555), and chlorophyll for different re-
gions of the Southern Ocean and phytoplankton
taxa. These relationships were developed with
OC2V2, but results should be similar for the
wavelength-switching OC4V4 algorithm. (B) Data
collected along the Antarctic Peninsula show flu-
orometrically derived Chl ≈1.7-fold higher than
coincident HPLC estimates. Solid line is best fit,
and light dotted line is from Antarctic Polar Front
Zone (47).
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ocean (56) or decreased in most of the
ocean basins (57).
Second, we need to move toward the use

of more-analytical approaches for ocean
color remote sensing. Changes in water
color indicate differences in the optical
properties of the surface ocean, but are not
necessarily the result of varying Chl con-
centrations. As discussed herein, color
differences can be attributed to changes in
size or type of phytoplankton or to the
amount of CDOM or sediments. Even
changes in atmospheric gases, aerosols, or
sea surface whitecaps may not be properly
considered in the models. Purely statistical
or empirical models are only accurate
when conditions are similar to past con-
ditions (e.g., small phytoplankton pop-
ulate the oligotrophic ocean). When
considering a changing ocean, the cause of
the color change must be carefully assessed
through semianalytical models that can
separate the spectral variability due to the
myriad of light absorbers and scatterers
present in any water mass. Instead of
simple ratios of two or more bands, these
models take into account the absorption
and backscattering properties of various
types of phytoplankton and other com-
pounds across the visible spectrum (58).
Semianalytical models are still parame-
terized with some empirical components,
however, and may require optimization for
different regions or broad classes of water.
Any such approach should be routinely
validated to be accurate across a wide
range of natural waters and under chang-
ing conditions. With the use of more ad-
vanced models, we can begin to ascertain
the reason for changing water color and
not simply attribute all spectral variability
to absorption by Chl.
Third, new sensors should be launched

that expand the current set of ocean color
capabilities. Additional spectral channels
across the visible channels will allow for
better assessments of Chl and further de-
lineation of the types of phytoplankton and
their various ecological and biogeochem-
ical roles. High-resolution spectral in-
formation between 430 and 500 nm, for
example, was used to differentiate distinct
absorption features of diatoms and cya-
nobacteria (59). More spectral inform-
ation may also be useful in evaluating
shallow-water benthic systems and carbon
transport to the deep sea (60), and as-
sessments of dust and aerosols for image
processing. Active sensors, such as light
detection and ranging (LIDAR), will allow
us to probe into the depths of the oceans.
In the Arctic Ocean, for example, pri-
mary production associated with the deep
nutricline, not detectable with passive re-
mote sensing, can exceed surface pro-

ductivity by over an order of magnitude
(9). Modeling results suggest that esti-
mates of integrated primary productivity
can be dramatically improved by in-
corporating the vertical distribution of
phytoplankton biomass from LIDAR
measurements.
Fourth, because optical constituents will

not necessarily covary in the future as they
do in today’s ocean, comprehensive and
consistent field observations must be used
to assess the accuracy of satellite-derived
Chl, provide better linkages to processes
within the water column, and supply a
regular data stream for algorithm de-
velopment. Data from ships, moorings,
gliders, and profiling floats (61) can pro-
vide important complementary data to
satellite ocean color about the vertical
structure of ocean waters as well as regions
obscured by clouds. Networked systems
could produce daily fields of depth-
dependent optical properties not observ-
able from space for assimilation into 3D
global models. Data from sensors used to
monitor aerosol variability could also
prove valuable for atmospheric correction
of imagery, particularly near population
centers with airborne pollutants.
Furthermore, extended field observa-

tions under high solar zenith angles in
concert with assimilative ocean modeling
may be necessary to produce better time-
averaged parameters that account for bi-
ological activity not observable by satel-
lites. Ocean color sensors typically produce
overestimates of Chl because of selective
sampling in locations and times of favor-
able phytoplankton growth. Ocean color
can only be viewed from space when clouds
are not present. Although not always the
case, higher Chl has been associated with
periods of clear skies suitable for remote
sensing (62), possibly related to a more
favorable light environment for phyto-
plankton growth. Moreover, imagers can-
not sample when sun angles are large,
a common problem in high-latitude winter
months. Phytoplankton populations are
generally lower at these times due to light
limitation, and routine undersampling
from satellites at times of low biomass
results in overestimates of time-averaged
Chl. Such overestimations in Chl are
greatest in high-latitude regions where
clouds are frequent and solar zenith angles
are high. Globally, this sampling bias is
larger than natural interannual variability
in Chl (62). Such sampling limitations
should be more explicitly considered when
using satellite-derived Chl for assessing
global carbon stocks.
Humans cannot physically observe the

vast ocean landscapes dominating Earth. In
a rapidly changing world, we must rely on

our “eyes in space” or satellite sensors that
inform us of the status of ocean biota that
help regulate atmospheric carbon. Ocean
biota is not only influenced by climate
change, but plays a large role in the cli-
mate cycle itself. Hence, society must
move beyond operational approaches in-
capable of assessing a changing ocean, and
invest in new and better technological
approaches that can decipher the multi-
hued ocean and the ever-changing di-
versity of life within.

Methods
Remote sensing reflectance, Rrs, represents the
ratio of water-leaving radiance normalized to in-
cident irradiance at the sea surface and is the ra-
diometric quantity used to assess ocean color from
space. The spectral quality and magnitude of Rrs

is governed by the water’s optical properties and
is proportional to the ratio of light scattered in
the backward direction out of the water column
(i.e., backscattering, bb) to absorption (a), such
that (4)

Rrs∝
bb

aþ bb

A radiative transfer model, Hydrolight, was used
to estimate Rrs with various environmental input
parameters (6). The model was run with
four different optically active components corre-
sponding to pure water (15), phytoplankton,
CDOM, and minerals (set to null). To assess vari-
ability of Rrs with different absorptive proper-
ties, the Chl-specific phytoplankton absorption,
a*ph(λ), for each size class was input into the
model (30). Chl was assumed to be constant with
depth and ranged from 0.01 to 60 mg·m−3. For
the first sensitivity analysis, absorption by CDOM
was proportional to Chl absorption at a refer-
ence wavelength following an exponential re-
lationship (F = 1, λ0 = 440; γ = 0.014) (6). Inelastic
scatter from Chl, CDOM, and Raman scattering
were included. A semiempirical clear sky model
with a solar zenith angle of 55° was used with
5 m·s−1 winds. Scattering was modeled with a Chl-
specific power-law dependence on wavelength
with near-surface coefficients (b0 = 0.407; λ0 = 660,
n = 0.75, and m = 1) (37). The particle-phase
function, which determines the fraction of light
that is backscattered, was modeled from Fournier-
Forand (FF) with different amounts of backscatter
fraction (bb/b) varying with Chl (39). For the
CDOM sensitivity analysis, the model was run with
a*ph(λ) for ultraplankton and with varying CDOM
levels from 0 to 0.03 m−1. For the backscattering
sensitivity analysis, the backscattering fraction was
modeled as either 0.04 or 0.001 for all levels of
Chl, and phytoplankton absorption properties
were allowed to vary bio-optically with Chl (29).
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